
256

The Simple Multi-Touch Toolkit

Kalev Sikes, Zachary Cook, Erik Paluka, Mark 
Hancock, and Christopher Collins

Introduction
The popularity of mobile devices and large interactive displays has brought 
the touch input paradigm into the limelight. Individuals from various 
domains are eager to take advantage of the benefits of this interaction 
style. The problem is that the differences from mouse and keyboard input 
often create barriers for non-expert programmers to prototype their ideas. 
The lack of familiarity of the unique requirements for surface application 
development has inhibited the proliferation of this platform as a medium 
for research, design, and art. To mitigate this problem, surface computing 
education needs to be incorporated into the curricula of programs in 
computer science (CS), information systems, and digital media. In order for 
this to happen we need tools which can be successfully used by people of 
different programming skill levels, and which support the rapid prototyping 
of applications. Existing toolkits for surface development tend to be too 
complex for non-CS majors to use. In addition, the time required to create 
a prototype using these toolkits prevents them from being integrated into 
high paced human-computer interaction courses. To solve this dilemma, we 
have created the Simple Multi-Touch toolkit (SMT).

With a focus on education and interdisciplinary use, the main goal of our 
open source toolkit is to simplify the prototyping process for people from 
differing domains whose programming skill levels range from novice to 
expert. As a library for the Processing programming language (Reas and Fry, 
2006), our toolkit has a simplified syntax and an accessible graphics model. 
Its high-level nature makes surface development a more inclusive activity 
and less daunting for beginners. Novices are able to take advantage of its 
features without knowing CS concepts such as object oriented and event-
driven programming. The toolkit is also beneficial for expert programmers 
since it is highly customizable, efficient, and provides access to low-level 
input data and graphical primitives.

To further reduce the knowledge and time required to develop surface 



257

applications, SMT is device agnostic through the integration of many input 
bridges. People no longer have to spend a considerable amount of time 
customizing their application or use multiple toolkits to develop for different 
platforms. These design choices have resulted in a robust toolkit that has 
been used, with success, at multiple universities for developing research 
prototypes to full-fledged applications. The tool has also been integrated 
into HCI courses at two universities to facilitate the teaching of prototyping 
to non-programmers and multi-touch computing to CS students.

Our primary contribution is a simplified software toolkit that can reduce 
the amount of time required for prototyping by both programmers and 
non-programmers. We also briefly describe our experiences and resulting 
insights gained from using this toolkit over the span of two years in HCI 
courses, as well as for research and application development.

Related Work
With the advent of computer vision frameworks (NUI Group, 2013; 
Gokcezade et al., 2010; Kaltenbrunner, 2009), the creation of multi-touch 
systems has become increasingly prevalent. With this rising popularity, 
researchers have been working on ways to reduce the difficulty of developing 
for these platforms (Kammer et al., 2010). As a result, multi-touch toolkits 
for different programming languages have been designed (Hansen et al., 
2009; Khandkar et al., 2010; Laufs et al., 2010; Leftheriotis et al., 2012; 
Luderschmidt et al., 2010; Nebeling and Norrie, 2012). While reducing 
development complexity is important, supporting rapid prototyping is 
equally so, as it allows the evaluation of design decisions with minimal effort 
(Tang et al., 2011) resulting in an improved design process (Olsen, 2007).

To support rapid prototyping in post-WIMP design, König et al. created 
Squidy, which uses semantic zooming and visual dataflow programming 
to make development accessible to novices with the ability to provide 
advanced features when needed (König et al., 2010). T3 is an interactive 
tabletop toolkit meant for prototyping high-resolution (multi-projector) 
applications (Tuddenham and Robinson, 2007). To facilitate prototyping 
interfaces for shared interactive displays, such as interactive tabletops, Shen 
et al. (2004) developed the DiamondSpin toolkit, which works exclusively 
with DiamondTouch tables. Specifically focusing on gaming, Marco et al. 
(2012) created a software toolkit to ease the prototyping of tangible games 
for vision-based interactive tabletops. Hasen et al. (2009) present the PyMT 
toolkit, with a specific focus on a new event model to support flexible and 
creative design of multi-touch widgets and interactions in a post-WIMP 
environment. Our SMT toolkit similarly supports rapid prototyping of surface 
applications, but we focus on the Processing model of coding as sketching, 
and designed it to support teaching multi-touch programming in classroom 
environments as well as enabling digital media expressivity and creativity.

Pedagogical software toolkits have ranged from teaching students skills 
related to art (Ariga and Mori, 2010) to more traditional computer science 



258

concepts and skills (Kobayashi et al., 2006; Murshed and Buyya, 2002). 
Toolkits have been shown to lower the skill barriers for entry and reduce 
development viscosity when creating user interface applications (Olsen, 
2007). For example, Hornecker and Psik (2005) effectively used the ARToolKit 
to teach students how to prototype tangible interfaces. In this work, we 
target the Processing programming language to create a toolkit which is 
useful for both prototyping and education for multi-touch applications. 
Processing is a high level programming language and development 
environment designed to enable nontechnical people to use computational 
methods in the creation of their projects (Reas and Fry, 2006). Our toolkit 
augments Processing by providing the first comprehensive library of high 
level methods and features targeted at reducing the complexity of surface 
development and supporting educators in teaching the fundamentals of 
surface computing.

Design Goals
The ability to use one’s hands and fingers to interact with digital information 
is a promising technology for a variety of creative applications and interfaces. 
Hardware supporting collaboration, in the form of tabletop and wall displays, 
is becoming more common and significant continued growth is expected 
(Jain, 2014). For a variety of reasons, including variable content orientation, 
multiple simultaneous inputs, the prevalence of direct manipulation, and 
a need to support co-located collaboration, traditional WIMP (Windows, 
Icons, Menus, and Pointers) interfaces are undesirable for many multi-
touch usage scenarios. We have designed SMT for non-programmers 
and programmers alike to be able to rapidly prototype creative and novel 
interfaces and techniques that make use of multi-touch interaction.

We chose Processing as our target language for several reasons. Processing 
supports teaching the fundamentals of computer programming, and has 
been used for this purpose in many different educational contexts around 
the world, including high school, university, and online courses in visual arts 
and computer science, and has been downloaded over two million times 
(Reas and Fry, 2015). The Processing platform already has many powerful 
graphical libraries, which support the rapid prototyping of beautiful, creative 
sketches.

It has an easy deployment pathway for installation of libraries directly in the 
IDE, and a wide variety (e.g., sound, networking, data, math, etc.) of libraries 
are already available. Processing is built around a flexible programming 
model supporting three levels of development (Reas and Fry, 2003):

Simple: single line programs
Novice: hybrid procedural/object-oriented style
Expert: full object-oriented (Java) style

In addition to supporting this multi-level coding flexibility, we built the SMT 
toolkit using the following design objectives, derived from our experiences 
in teaching modules on multi-touch computing in HCI courses:



259

Multi-touch for the masses. The toolkit was designed to allow people 
to rapidly create prototypes with little knowledge of programming. We 
focussed specifi cally on allowing access to touch interaction and common 
multi-touch components, without the need for an understanding of object-
oriented programming (OOP) or events.

Ability to sketch multi-touch ideas. The toolkit was designed to allow for the 
sketching of multi-touch interfaces and interaction techniques. Specifi cally, 
we focussed on minimizing code required to have a working multi-touch 
interface that enables the testing of design ideas, rather than on polishing 
the look and feel of interface components or developing a robust application 
ready for deployment.

Ability to code multi-touch in a one-hour lab session. The toolkit was also 
designed to enable students to go from no experience with multi-touch 
programming to creating a simple multi-touch interface in a one-hour lab 
session. Specifi cally, the toolkit was designed with the intent of allowing 
courses to focus content on the design aspect of multi-touch, rather than 
the in-depth programming understanding required to make working multi-
touch systems.

Support for a variety of platforms and inputs. The toolkit is cross-platform, 
running on Windows, Mac, and Linux. An Android version is also available 
but requires a custom build of Processing to use it. SMT was designed 
to support native (e.g., Windows) touch events, as well as popular input 
providers such as the TUIO protocol (Kaltenbrunner, 2009). SMT also 
supports touch emulation using a mouse.

Support both novices and experts. The toolkit was designed for use in 
teaching of HCI courses where students range from students in programs 
such as visual design or management (“novices”), to fourth year CS students 
(“experts”). Similarly, the toolkit was designed to support quick sketching of 
small ideas (e.g., lab assignments) as well as development of large projects 
(e.g., graduate student research or interactive artwork). This was achieved 
through a fl exible syntax in which there are multiple avenues for achieving 
the same result.

Figure 1. Overview of the architecture of the Simple Multi-Touch Toolkit. The 
Processing Sketch is written by the student or designer after importing the SMT 

library, which provides input handling and rendering capabilities.



260

The Simple Multi-Touch Tookit
Following our design guidelines, the SMT toolkit integrates with the styles 
of programming supported by Processing. The central construct of SMT is 
a new display and interaction primitive called the Zone. SMT also provides 
back-end support for a variety of input devices, handling touch events 
and providing them to applications using a common Touch construct. The 
accompanying website offers documentation, including complete JavaDoc 
and a full suite of tutorials and teaching materials.

Zones
The Zone is the central concept of the toolkit (Figure 1, bottom left). Zones 
are similar to Windows or Panels from other windowing toolkits, with the 
important difference that, as graphical primitives, they are not limited 
to assumptions such a predefi ned direction/shape/scale or interaction 
through a single mouse and keyboard. Moreover, they are designed to 
be understandable without an in-depth understanding of object-oriented 
programming, messaging, or callback functions. Each zone defi nes a 
drawable and touchable artifact in the programmer’s sketch. Zones can be 
customized to accomplish a variety of interface goals. The most important 
and common modifi cations, changing how a zone draws and what happens 
when it is touched, have special support from the toolkit. Zones can be 
nested, which permits the creation of more complex user interface elements, 
such as toolbars and menus (which SMT also provides).

Figure 2. An example from Processing’s website (https://processing.org/examples/
mouse2d.html) to demonstrate mouse use (left),converted to support multiple 

touches using SMT (right).

Zone Methods. There are two critical methods that must be implemented for 
each zone. These are the draw method (adapted from Processing) and the 
touch method (introduced in SMT). There are two different styles in which 
these methods can be written—procedurally and using object-oriented 
programming (OOP). These two styles mimic the approaches taken by 



261

Processing and Java, respectively. We discuss how we incorporated both 
styles into SMT later in this report. To implement these methods using OOP, 
the traditional approach of overriding the methods in a class that inherits 
from the Zone class is used:

To implement these methods procedurally, one would fi rst create the zone 
with a string-based name:with a string-based name:

And then defi ne a method in the processing sketch by appending the zone’s 
name. For example, to implement the draw method, one would write the 
method:

To implement the touch method for same zone, one would write the method:To implement the touch method for same zone, one would write the method:

When both a procedural and object-oriented implementation are detected 
for the same zone name and method, the procedural one is selected and 
invoked by the toolkit.

Nesting. An important principle in user interface design is the nesting of 
elements. SMT supports this principle by permitting zones to be nested in 
parent-child relationships. This is done by having the child zones inherit their 
parent’s transformation matrix. If the parent is rotated, scaled, or translated, 
the child will be rotated, scaled, or translated along with it.

Touch Input
SMT supports all the most common desktop touch input devices (Figure 1, 
right). This includes TUIO devices, Windows Touch, SMART Tables, and Leap 
Motion. Each of these touch event sources are optional and can be used 
in any desired combination. Since each of these devices provides events in 
a different way, they must be unifi ed in some manner. SMT handles this by 



262

converting all input into the TUIO protocol. SMT then wraps the underlying 
TUIO cursor object with a convenient Touch class which provides the user 
with an abstract handle to touches that is both easy to understand and use. 
For example, to make any Processing sketch touch-capable, one need only 
add a few lines of code (Figure 2).

Figure 3. Various interface components provided as Zones in SMT.

While we have designed processing of touch events to closely resemble 
mouse handling in Processing, we have also provided several techniques 
for conveniently enabling common multi-touch interaction techniques, 
such as rotation, translation, and scaling. For example, to implement the 
common RST (rotate-scale-translate) method on any zone, one would write:common RST (rotate-scale-translate) method on any zone, one would write:

Implementation Details. After conversion into the TUIO format, touches are 
assigned to zones using standard colour picking. The defi nition of picking 
bounds is actually done with a zone method in the same form as the draw 
and touch methods previously discussed. Special care has been taken in the 
development of SMT to prevent colour calls and similar erroneous call from 
being made within this picking method. After touches have been assigned 
to their zones, a group of methods that correspond to the main types 
of touch events are invoked. These methods can also be defi ned in the 
procedural or object-oriented form. Finally, the touch method is invoked, 
within which there are a number of predefi ned standard gestures that can 
be used, such as drag, pinch, rotate, and scale.

Common Interface Components
In addition to providing support for programmer-drawn zones and low-level 



263

touch handling, we provide several common interface components that can 
be added in the same way as any other zone. For instance, we provide 
support for tabs (TabZone), buttons (ButtonZone), sliders (SliderZone, 
SlideRevealZone, PatternUnlockZone), checkboxes (CheckBoxZone), menus 
(PieMenuZone and LeftPopUpMenuZone), keyboards (KeyboardZone), and 
many other common interface components (for a total of 21 zones). Figure 
3 shows several of these components rendered in an SMT sketch.

Many of these components are made interactive through methods that can 
again be overridden in a child class (OOP) or directly in the sketch through 
a named method (procedural). For example:a named method (procedural). For example:

Development and Debugging Tools
Multi-touch Emulation. Not all development machines necessarily have 
touch input methods. In order to support the development and testing of 
SMT sketches on machines lacking such input devices, we implemented a 
convenient way of emulating multi-touch with just a mouse. The system is 
fairly simple: the left mouse button emulates a temporary touch, and the 
right mouse button emulates a touch that lingers. Touches created with the 
left mouse button will only stay as long as the mouse button is held down. 
Conversely, touches created with the right mouse button will remain after 
the mouse button is released. At this point, these lingering touches can 
either be moved around with the left mouse button, or removed by right-
clicking them again. Any number of touches can be created, but only one 
can be moved at a time with the mouse.

Procedural Programming Warnings. The procedural-style zone methods 
must follow a fairly specifi c form in order to be detected and invoked 
properly. Since mistakes in following this form are easy to make, SMT 
provides a number of warnings to help guide the user. For example, when 
a method is detected with one of the zone method prefi xes, but the rest of 
the method name does not match any known zones, it is likely that the user 
simply misspelled the name of one of their zones, so SMT prints a warning.

Documentation. In this vein, SMT’s website covers most of the bases. In 
addition to recent release information, the website hosts SMT’s JavaDocs 
as well as a full suite of tutorials, examples, and a Processing-style reference 
page. The tutorials start with the basic concepts, then covers all the important 
more advanced concepts, including various visual customizations, how to 
make viewports, and how to transition code from the procedural style to 



264

the object-oriented style.

Programming with SMT
In this section we demonstrate through examples how SMT supports both 
novice and expert coding styles in a manner which is harmonious with the 
norms in the Processing programming language. Many of these examples 
are also available in the tutorials section of the SMT website.

Supporting Different Programming Styles
We support two main styles of development, novice and expert. Statements 
in each style can be interleaved in the same application, giving maximal 
flexibility to developers. The novice style is a hybrid of procedural and 
object-oriented programming (OOP), minimizing use of OOP concepts such 
as event processing, constructors, and object inheritance. The expert style 
is standard OOP. In addition, developers may use the Processing IDE (best 
suited for novices) or whichever development environment they prefer (e.g. 
Eclipse, best suited for experts). For example, the standard Java statement 
SMT.add(new Zone(“MyZone”, 100, 200, 50, 60)); can be rewritten as SMT.
addZone(“MyZone”, 100, 200, 50, 60); in the novice style. Note that due to 
the constraint that all Processing sketches must extend PApplet (“Processing 
Applet”), we are unable to make methods available to developers without 
requiring the SMT. prefix.

In the following example we demonstrate how to create a simple, highly 
responsive application which renders a custom “happy face” Zone that 
supports multi-touch rotate, translate, and scale. The code is written using 
the Processing hybrid procedural/object-oriented style for novices (Figure 4, 
left) and using traditional object-oriented style for experts (Figure 4, right).

In both examples, the sketch is initialized with the import statement from 
SMT, which is provided automatically by Processing when the library is 
included in the IDE. The setup method is common to all Processing sketches. 
In SMT it must include a call specifying the initial window size and selecting 
the SMT renderer, which inserts SMT zone management into the Processing 
rendering queue. SMT is then initialized. In this example, a single zone called 
“MyZone” is added to the sketch. In the novice style, the zone is added by 
naming it in the addZone call, and subsequent draw and touch methods 
reference the specified name using reflection. That is, the novice can create 
a method called drawMyZone and it will be invoked appropriately to render 
the zone. Some people, especially those used to Java and object-oriented 
programming, can find SMT’s reflection-invoked methods non-intuitive. 
Thus, in the expert style, an inner class called MyZone is created using the 
add method and has its own draw and touch methods.



265

Figure 4. Code for creating the “happy face” example, using novice (i.e., more 
procedural) approach on left, and expert (OOP) approach on right, and the resulting 

sketch (bottom).

Examples
In this section, we introduce Processing sketches built with the SMT 
toolkit. To support a learning-by-example style of learning, as requested 
by students in the fi rst in-class deployment, the SMT library in Processing 
comes with more than 25 example sketches which illustrate each Zone type 
and method. In addition, we provide 4 sketches corresponding to online 
tutorials, and 12 fully realized demonstration applications, including a photo 
organizing application, a checkers game, a login screen, and a table hockey 
game. We will discuss the table hockey example below.

The table hockey demonstration application was made by an intern within 
their fi rst week working with SMT. The 311-line sketch produces a simple 
two-player table hockey game, designed to be played on a multi-touch 
table display. Each of the pucks are SMT Zones. All the pucks could 



266

theoretically be handled at the same time, as long as the touch devices 
being used can handle that many touches. Pucks can be tossed across the 
game board at variable velocities. To demonstrate Zone manipulation, a 
160-line custom physics engine manages collisions between pucks and with 
board boundaries, but this could also be accomplished with a third party 
physics library.

Figure 5. A table hockey game written with SMT.

Initial Evaluation
After the initial phase of development on SMT, we deployed it in two HCI 
classes for students to use in laboratory activities and in the development 
of term-long group projects. We studied the deployment of the toolkit 
through student feedback surveys and analysis of completed student 
projects. The goals of the study were to investigate whether SMT was 
useful for prototyping multi-touch applications, accessible to novices, and 
powerful for experts. In particular, we sought to understand the speed of 
the development cycle and whether students became comfortable with 
rapid prototyping (sketching) using SMT during their brief exposure to it.

Method
Participants were recruited from two HCI courses at two separate universities. 
At one of the universities, the HCI course was being taught to mainly 
management sciences students who had relatively little experience with 
programming (“novices”). At the other university, the students were fourth 
year computer science and software engineering students (“experts”). The 
idea behind this approach was to show separately how both novice and 
intermediate programmers responded to SMT.

After their fi rst lab session using SMT, the students of these courses were 
asked to fi ll out a questionnaire on the toolkit. After their last lab session 
using SMT (6 weeks later), they were asked fi ll out the same questionnaire 



267

again. Students were invited to grant permission to use the code and images 
of their project for the purpose of analysis of the toolkit. The questionnaire 
was based on “A Cognitive Dimensions Questionnaire” (Blackwell and 
Green, 2007), a standardized framework for analyzing the usability of 
information artifacts, in particular software systems (Blackwell, 2015). All 
data was collected by a third party and retained until after fi nal grades were 
submitted to ensure separation of the study and the course outcomes.

We received a total of 22 responses to the fi rst round deployment of the 
questionnaire, but only 1 response to the second round. At one of the 
universities, no students completed the questionnaire. Thus, all responses 
we received were from the “experts” group. This made the intended 
comparison between the four sets of responses infeasible. Results below 
refer only to the fi rst administration at one university. Four (out of 14) groups 
in the computer science class gave unanimous permission to evaluate their 
projects for the purposes of this study.

Figure 6. Breakdown of time spent, sorted by time spent searching for information.

Questionnaire Results
Below we discuss the results of the three sections of the questionnaire: 
time using SMT, questions about usability of the API, and suggestions for 
improvement.

Time. Out of the 22 participants who completed the questionnaire, 19 had 
only spent 1-2 hours working with the toolkit. The other three participants 
all had spent 3-5 hours working with the toolkit.

A series of questions asked about fraction of time spent on each type of 
development activity that can occur while using a notation. It was intended, 
but not enforced, that the sum of each response would be 100%. Figure 6 
shows how each participant estimated the time they spent on the various 
types of development activities they undertook while working with SMT. 
The participants are sorted by their answer to the fi rst question. Participants 
whose responses did not add up to 100% have been normalized and are 
marked with asterisks.

The results show a marked variance in activities undertaken with the toolkit. 



268

Given that these results come from after only a short time using SMT, it 
makes sense that, for many participants, searching for information and 
copying code examples into the system were dominant tasks. For eight 
participants, more than half the time was spent on the core prototyping 
activities of tinkering with code and playing with ideas.

Questions about API Usability. Table 1 shows the response breakdown for a 
series of questions related to the various features of SMT. First impressions 
of the students indicate that they thought SMT was easy to use (Q1, Q2, 
Q4), succinct (Q3), predictable and transparent (Q6, Q7, Q8, Q12), and 
fl exible (Q9, Q10, Q11, Q13). Comments included “The concept of zones 
and sub zones does work well and provides an easy hierarchy to follow” (Q6) 
and “[It is] easy to have a short development cycle with save and run” (Q9). 
There is evidence that some students found it easy to make errors or slips 
(Q5), indicating our error checking and compile-time warnings could be 
improved. In particular, several participants lamented the lack of a standard 
debugger in Processing. Also, students indicated that they did not use the 
toolkit in new and different ways (Q14, Q15), which was likely due to the 
brevity of their experience with it.

Table 1. Responses to the questions asked in our questionnaire.

Suggestions. Twelve participants responded with specifi c suggestions 
for improvement of SMT. Seven of the responses in some way requested 
better documentation, often specifi cally requesting example-based 
documentation. Two of the responses recommended changing SMT to 
better follow object-oriented design. Two responses requested features 
from more a complete IDEs like Eclipse (which was related to the Processing 
environment and not SMT). Two responses were generally positive 



269

comments, e.g. “nice and adequately built toolkit”. One response was a 
specific feature request for improvements to the zone rotation process.

Student Projects. The projects the students completed as part of their course 
mainly involved the design of a prototype user interface. Various methods 
of design were taught and encouraged, including sketches and storyboards, 
paper prototypes, and software prototypes (created in Processing). The 
software prototypes used SMT to manage the touch interactions in the user 
interface. Prototypes developed with SMT ranged across a wide variety of 
topics, including mobile workout coaching for a phone-sized device and 
transit planning for a wall display, demonstrating the flexibility of SMT 
across domains and hardware.

Discussion. There were pragmatic challenges in running a classroom-based 
study in our own classrooms. One issue was that we were not granted approval 
under research ethics to incentivize our participants in any way, including 
through means unrelated to the course, such as monetary remuneration. 
In addition, we did not allocate class time for the administration of the 
study. Thus, requesting students to complete an optional and anonymous 
questionnaire on their own time with no reward contributed to our low 
response rate. We also hypothesize that the specific design of some of the 
questions, based on the Cognitive Dimensions model, may have intimidated 
students due to unfamiliar language referring to “notations”.

The suggestions received in the questionnaire likely reflect participants’ 
enrollment in a traditional computer-science program: they expected a 
powerful IDE and object-oriented style. To respond to these, we improved 
the documentation and the curriculum to explicitly help advanced students 
work within Eclipse in an object-oriented style if they chose to do so. We 
improved SMT and its documentation based on student feedback and 
several months of refinement with our users through the open source 
deployment before offering one of the courses again, with a revised study, 
as discussed in the next section.

Follow-up Evaluation
Based on experiences with the first use of SMT in teaching multi-touch for 
human-computer interaction, we made many improvements to the toolkit, 
including extensive documentation, online tutorials, and examples which 
illustrated each Zone type and method. Advanced examples and tutorials 
illustrated functionalities such as custom picking and viewports. In addition, 
we simplified our study method and conducted a second round of evaluation 
at one university (the second university was not offering the course).

Method
Participants were recruited from a fourth year computer science course (the 
same course for which results of the first study are reported). At the end of 
the semester, after two laboratory activities using SMT, and after using SMT 
to create prototypes for their term project, a questionnaire which focused 



270

on ease of learning SMT was administered. Demographic data on years of 
experience and self-rated programming skill was collected.

Again, students were invited to grant permission to use the code and images 
from their fi nal group project, with optional acknowledgement to them, for 
the purpose of analysis of the toolkit. We received a total of 18 responses to 
the questionnaire and 7 groups provided unanimous permission to evaluate 
their projects for the purposes of this study.

Figure 7. Ease-of-coding questionnaire results from follow-up evaluation.
Participants are grouped by skill level as indicated on the left.

Results and Discussion
Students indicated an average of 19 hours experience with SMT (min: 4, 
max: 80). The large spread is expected as they were using SMT as part 
of a large group project where greater coding responsibilities may have 
been delegated to some students. Our questionnaire contained a series of 
questions investigating how long it took to learn the toolkit (from one hour 
to several months). All but three students indicated “agree” or “strongly 
agree” with feeling comfortable using the toolkit after a few hours, and all 
students but one were comfortable after a day. The one remaining student 
(skill level=4, hours of use=40) indicated “neutral” for all time periods. In 
the analysis which follows, we divided students into two groups: novice 
(self-rated 1–4, n=8) and expert (self-rated 5–7, n=9). A summary of 
questionnaire results by skill level is found in Figure 7.

Q1 indicated that most students of all skill levels found it easy to start using 
the toolkit. Q2 shows a split, with novices expressing more challenge with 
customizing and changing the toolkits functionality. This is not concerning 
as 75% of experts did not fi nd it diffi cult, and this is an advanced function 



271

which normally would not be used by novices. Q3 showed that all students 
found it easy to test their work. Q4 again reveals a split between 25% of 
experts who had some difficulty playing with new ideas, and 64% of novices 
who had some difficulty. Both experts and novices found the code readable 
(Q5). The results on ease of debugging were similar between groups, with 
around 30% indicating some difficulty debugging. 14 students provided 
specific suggestions for improvement. Of these, 6 corresponded to the 
Processing IDE (e.g. desire for code completion). 8 comments related to 
feature and improvement suggestions for SMT, with 7 students suggesting 
further improvements to the online documentation, including coded 
examples for every method.

Students created a wide variety of prototype applications for multi-touch 
table and wall displays, including transit planning, digital board games, 
personal health monitoring, and a prototype public display providing access 
to outreach services for the homeless, pictured in Figure 8.

Figure 8. Example screens from a student term project created with SMT, showing a 
public kiosk interface to provide information about services for the homeless.

Overall, the results of our questionnaire indicate student satisfaction with 
SMT across skill levels. Concerns around ease of debugging likely relate 
to the use of runtime warnings (e.g. if a student creates a zone called 
“OKButtonZone” without the “drawOKButtonZone” method, a warning is 
generated at run-time instead of compile time). This is due to the use of 
reflection and the capabilities of the Processing IDE. Students self-rating as 
novice did also indicate some difficulty playing with new ideas, revealing 
that for this group, further improvements to code simplicity and training 
materials are needed. We leave this for future research.

Real-World Use
SMT has been developed and actively supported for two years, during 
which it has been used in two human-computer interaction and interface 



272

design courses at two different universities across multiple semesters (for 
a total of four classes) to help students learn to develop medium fidelity 
prototypes of their multi-touch designs. Our toolkit has also been used for 
the development of research prototypes in at least six graduate student 
projects.

Figure 9. Graduate research projects TandemTable (left) and,
 Pandemic (right), created with SMT.

Feedback from the use in these real-world projects has been mostly 
positive, with students able to create interesting and sophisticated multi-
touch designs, while not requiring significant in-class time to learn how 
to program. Students were instead able to focus their learning on design 
methods and evaluation techniques. Graduate students commented on 
the ease with which they could rapidly prototype, mentioning how in most 
cases the development took far less time than their previous experience 
with Application Programming Interfaces such as Windows Presentation 
Framework and C#.

We feature two graduate student research projects using SMT in Figure 
9. The first is an assistive application for the tandem language learning 
method. It was developed in order to study how interactive tables can be 
used to augment the language learning process (Paluka and Collins, 2015). 
The second is a multi-touch implementation of the Pandemic board game 
(Chang et al., 2014). It was developed in order to study how knowledge 
of past game events may change people’s strategies and behaviors while 
playing turn-based games. SMT has also been used to develop and publish 
a multi-touch visualization application by a research group not affiliated 
with the SMT authors (Dai et al., 2015). While the graphical rendering 
capabilities of the Processing environment were helpful to these projects, 
specific features of SMT were also critical to their success. 

SMT is a free and open source library. Its codebase is currently hosted on 
GitHub at http://github.com/vialab/smt. Being hosted in a public and easily 
accessible venue holds many benefits to a toolkit. One of these benefits 
is the feedback and input from people from all over the world, whom we 
would never otherwise have been given the opportunity to interact with. 
SMT’s GitHub page regularly receives 60+ unique visitors per week. Not 
including the authors, SMT’s GitHub page has been followed by 26 people, 



273

and starred by 31. In addition to this, we have received and dealt with many 
bug reports and feature requests from users around the world.

Conclusion and Future Work
We have created the Simple Multi-touch Toolkit, which is a simplified 
software toolkit for the Processing programming language. It is designed to 
reduce the amount of knowledge required and the complexity involved in 
programming multi-touch applications. Although our toolkit simplifies multi-
touch programming, seasoned developers are afforded many advanced 
additional features, such as access to more low-level data structures and 
many customization features. By combining SMT with a mouse-based multi-
touch emulator, users are able to develop their applications on machines 
without interactive surfaces, which then run seamlessly on touch-enabled 
surfaces. Cross-platform development is enabled through the integration of 
multiple input bridges and native TUIO support. SMT has been successfully 
used at multiple universities for developing research prototypes as well 
as full-fledged applications. The toolkit has also been used in courses at 
these universities for teaching concepts and skills related to HCI. Our web 
resources include tutorials and teaching materials for using SMT in the 
classroom and we will continue to support its use in teaching and research 
environments. In the future, we plan to incorporate additional support for 
more complex multi-touch gestures, to add automatic layout algorithms for 
creating interfaces with multiple Zones, and deploy SMT for Android, which 
is currently in private alpha development stage.


